High-order shock-fitting methods for hypersonic flow with chemical and thermal nonequilibrium

نویسندگان

  • Akshay Prakash
  • Neal Parsons
  • Xiaowen Wang
  • Xiaolin Zhong
چکیده

Computer simulations have been an effective tool to study transient flow processes in hypersonic flow and have been complementing experimental and theoretical studies to better understand the flow transition process. There have been lots of efforts in code development for high order simulation of nonequilibrium flow but most of the methods are based on shock capturing ideodology. Shock capturing schemes may not capture the flow processes with enough accuracy required to study flow transition. The essential requirements of such simulations are high order of accuracy of solutions in both space and time. We have developed a high order shock fitting code capable of simulating thermal and chemical nonequilibrium hypersonic flows. Shock fitting approach has the advantage of capturing the entire flow field with high order accuracy and without any oscillations near the shock which shock capturing schemes may exhibit for strong shocks. We have tested and validated the code thoroughly over a wide span of free stream conditions and geometries. We have implemented the current updated models available in literature for nonequilibrium and transport phenomenon. This code would be starting point for simulations to study real gas effects on receptivity for free stream disturbances and their transition to turbulence in the boundary layer, and for study of transition in ablative boundary layers. Here we present the methodology and validation cases for the code. The code in current form is up to third order accurate in time and fifth order accurate in space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition

Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies ...

متن کامل

Laminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow

In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed a...

متن کامل

High-Order Finite-Di erence Shock-Fitting Schemes for Direct Numerical Simulation of Hypersonic Boundary-Layer Receptivity to Free-Stream Disturbances

Direct numerical simulation of the receptivity of hy-personic boundary-layers to freestream disturbances requires high-order accurate numerical methods to resolve a wide range of time and length scales. Traditional second-order nite diierence schemes do not have an adequate accuracy level for the direct numerical simulation. In addition, hypersonic ow simulation needs to resolve unsteady bow sh...

متن کامل

Numerical Simulation of Hypersonic Boundary-Layer Instability in a Real Gas with Two-Dimensional Surface Roughness

Experimental and numerical results have shown that two-dimensional surface roughness can stabilize a hypersonic boundary layer dominated by second-mode instability. It is sought to understand how this physical phenomenon extends from an airflow under a perfect gas assumption to that of a real gas. To these ends, a new high-order shock-fitting method that includes thermochemical nonequilibrium a...

متن کامل

Analytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations

An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010